Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Computer Systems Science and Engineering ; 45(3):3005-3021, 2023.
Article in English | Scopus | ID: covidwho-2238722

ABSTRACT

The COVID-19 pandemic has become one of the severe diseases in recent years. As it majorly affects the common livelihood of people across the universe, it is essential for administrators and healthcare professionals to be aware of the views of the community so as to monitor the severity of the spread of the outbreak. The public opinions are been shared enormously in microblogging media like twitter and is considered as one of the popular sources to collect public opinions in any topic like politics, sports, entertainment etc., This work presents a combination of Intensity Based Emotion Classification Convolution Neural Network (IBEC-CNN) model and Non-negative Matrix Factorization (NMF) for detecting and analyzing the different topics discussed in the COVID-19 tweets as well the intensity of the emotional content of those tweets. The topics were identified using NMF and the emotions are classified using pretrained IBEC-CNN, based on predefined intensity scores. The research aimed at identifying the emotions in the Indian tweets related to COVID-19 and producing a list of topics discussed by the users during the COVID-19 pandemic. Using the Twitter Application Programming Interface (Twitter API), huge numbers of COVID-19 tweets are retrieved during January and July 2020. The extracted tweets are analyzed for emotions fear, joy, sadness and trust with proposed Intensity Based Emotion Classification Convolution Neural Network (IBEC-CNN) model which is pretrained. The classified tweets are given an intensity score varies from 1 to 3, with 1 being low intensity for the emotion, 2 being the moderate and 3 being the high intensity. To identify the topics in the tweets and the themes of those topics, Non-negative Matrix Factorization (NMF) has been employed. Analysis of emotions of COVID-19 tweets has identified, that the count of positive tweets is more than that of count of negative tweets during the period considered and the negative tweets related to COVID-19 is less than 5%. Also, more than 75% negative tweets expressed sadness, fear are of low intensity. A qualitative analysis has also been conducted and the topics detected are grouped into themes such as economic impacts, case reports, treatments, entertainment and vaccination. The results of analysis show that the issues related to the pandemic are expressed different emotions in twitter which helps in interpreting the public insights during the pandemic and these results are beneficial for planning the dissemination of factual health statistics to build the trust of the people. The performance comparison shows that the proposed IBEC-CNN model outperforms the conventional models and achieved 83.71% accuracy. The % of COVID-19 tweets that discussed the different topics vary from 7.45% to 26.43% on topics economy, Statistics on cases, Government/Politics, Entertainment, Lockdown, Treatments and Virtual Events. The least number of tweets discussed on politics/government on the other hand the tweets discussed most about treatments. © 2023 CRL Publishing. All rights reserved.

2.
Advances in Computational Collective Intelligence, Iccci 2022 ; 1653:330-336, 2022.
Article in English | Web of Science | ID: covidwho-2094423

ABSTRACT

Medical imaging has been intensively used to help the radiologists do the correct diagnosis for the COVID-19 disease. In particular, chest X-ray imaging is one of the prevalent information sources for COVID-19 diagnosis. The obtained images can be viewed as numerical data and processed by non-negative matrix factorization (NMF) algorithms, one of the available numerical data analysis tools. In this work, we propose a new sparse semi-NMF algorithm that can classify the patients into COVID-19 and normal patients, based on chest X-ray images. We show that the huge volume of data resulting from X-ray images can be significantly reduced without significant loss of classification accuracy. Then, we evaluate our algorithm by carrying out an experiment on a publicly available dataset, having a known chest X-ray image bi-partition. Experimental results demonstrate that the proposed sparse semi-NMF algorithm can predict COVID-19 patients with high accuracy,compared to state-of-the-art algorithms.

3.
J Med Internet Res ; 24(11): e42261, 2022 11 17.
Article in English | MEDLINE | ID: covidwho-2089646

ABSTRACT

BACKGROUND: Since the first COVID-19 vaccine appeared, there has been a growing tendency to automatically determine public attitudes toward it. In particular, it was important to find the reasons for vaccine hesitancy, since it was directly correlated with pandemic protraction. Natural language processing (NLP) and public health researchers have turned to social media (eg, Twitter, Reddit, and Facebook) for user-created content from which they can gauge public opinion on vaccination. To automatically process such content, they use a number of NLP techniques, most notably topic modeling. Topic modeling enables the automatic uncovering and grouping of hidden topics in the text. When applied to content that expresses a negative sentiment toward vaccination, it can give direct insight into the reasons for vaccine hesitancy. OBJECTIVE: This study applies NLP methods to classify vaccination-related tweets by sentiment polarity and uncover the reasons for vaccine hesitancy among the negative tweets in the Serbian language. METHODS: To study the attitudes and beliefs behind vaccine hesitancy, we collected 2 batches of tweets that mention some aspects of COVID-19 vaccination. The first batch of 8817 tweets was manually annotated as either relevant or irrelevant regarding the COVID-19 vaccination sentiment, and then the relevant tweets were annotated as positive, negative, or neutral. We used the annotated tweets to train a sequential bidirectional encoder representations from transformers (BERT)-based classifier for 2 tweet classification tasks to augment this initial data set. The first classifier distinguished between relevant and irrelevant tweets. The second classifier used the relevant tweets and classified them as negative, positive, or neutral. This sequential classifier was used to annotate the second batch of tweets. The combined data sets resulted in 3286 tweets with a negative sentiment: 1770 (53.9%) from the manually annotated data set and 1516 (46.1%) as a result of automatic classification. Topic modeling methods (latent Dirichlet allocation [LDA] and nonnegative matrix factorization [NMF]) were applied using the 3286 preprocessed tweets to detect the reasons for vaccine hesitancy. RESULTS: The relevance classifier achieved an F-score of 0.91 and 0.96 for relevant and irrelevant tweets, respectively. The sentiment polarity classifier achieved an F-score of 0.87, 0.85, and 0.85 for negative, neutral, and positive sentiments, respectively. By summarizing the topics obtained in both models, we extracted 5 main groups of reasons for vaccine hesitancy: concern over vaccine side effects, concern over vaccine effectiveness, concern over insufficiently tested vaccines, mistrust of authorities, and conspiracy theories. CONCLUSIONS: This paper presents a combination of NLP methods applied to find the reasons for vaccine hesitancy in Serbia. Given these reasons, it is now possible to better understand the concerns of people regarding the vaccination process.


Subject(s)
COVID-19 , Social Media , Humans , COVID-19 Vaccines/therapeutic use , Serbia , COVID-19/prevention & control , Vaccination Hesitancy , Pandemics
4.
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2022 ; : 3783-3791, 2022.
Article in English | Scopus | ID: covidwho-2020396

ABSTRACT

In this paper we develop a framework for analyzing patterns of a disease or pandemic such as Covid. Given a dataset which records information about the spread of a disease over a set of locations, we consider the problem of identifying both the disease's intrinsic waves (temporal patterns) and their respective spatial epicenters. To do so we introduce a new method of spatio-temporal decomposition which we call diffusion NMF (D-NMF). Building upon classic matrix factorization methods, D-NMF takes into consideration a spatial structuring of locations (features) in the data and supports the idea that locations which are spatially close are more likely to experience the same set of waves. To illustrate the use of D-NMF, we analyze Covid case data at various spatial granularities. Our results demonstrate that D-NMF is very useful in separating the waves of an epidemic and identifying a few centers for each wave. © 2022 ACM.

5.
Front Sociol ; 7: 886498, 2022.
Article in English | MEDLINE | ID: covidwho-1858010

ABSTRACT

The richness of social media data has opened a new avenue for social science research to gain insights into human behaviors and experiences. In particular, emerging data-driven approaches relying on topic models provide entirely new perspectives on interpreting social phenomena. However, the short, text-heavy, and unstructured nature of social media content often leads to methodological challenges in both data collection and analysis. In order to bridge the developing field of computational science and empirical social research, this study aims to evaluate the performance of four topic modeling techniques; namely latent Dirichlet allocation (LDA), non-negative matrix factorization (NMF), Top2Vec, and BERTopic. In view of the interplay between human relations and digital media, this research takes Twitter posts as the reference point and assesses the performance of different algorithms concerning their strengths and weaknesses in a social science context. Based on certain details during the analytical procedures and on quality issues, this research sheds light on the efficacy of using BERTopic and NMF to analyze Twitter data.

6.
Cities ; 127: 103751, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1850844

ABSTRACT

To curb the spread of the COVID-19 pandemic, countries around the world have imposed restrictions on their population. This study quantitatively assessed the impact of non-compulsory measures on human mobility in Japan during the COVID-19 pandemic, through the analysis of large-scale anonymized mobile-phone data. The non-negative matrix factorization (NMF) method was used to analyze mobile statistics data from the Tokyo area. The results confirmed the suitability of the NMF method for extracting behavior patterns from aggregated mobile statistics data. Data analysis results indicated that although non-pharmaceutical interventions (NPIs) measures adopted by the Japanese government are non-compulsory and rely largely on requests for voluntary self-restriction, they are effective in reducing population mobility and motivating people to practice social distancing. In addition, the current study compared the mobility change in three cities (i.e., Tokyo, Osaka, and Hiroshima), and discussed their similarity and difference in behavior pattern changes during the pandemic. It is expected that the analytical tool proposed in this study can be used to monitor mobility changes in real-time during the pandemic, as well as the long-term evolution of population mobility patterns in the post-pandemic phase.

7.
4th International Conference on Communication, Information and Computing Technology, ICCICT 2021 ; 2021.
Article in English | Scopus | ID: covidwho-1703854

ABSTRACT

Understanding the effects of a pandemic on the public sentiment is an important challenge in the study of social dynamics during a global pandemic. This paper puts forward a case study that throws light on the psychological impact of the COVID-19 pandemic on the people living in the Indian subcontinent. The study is based on a pipeline that involves preprocessing, sentiment analysis, topic modelling, natural language processing and statistical analysis of Twitter data extracted in the form of tweets. The results demonstrate the effectiveness of this pipeline in understanding the temporal impact of the different lockdowns implemented in the span of the pandemic on the public sentiment, which can be useful for healthcare workers, authorities, and researchers. ©2021 IEEE

8.
8th International Conference on Advanced Informatics: Concepts, Theory, and Application, ICAICTA 2021 ; 2021.
Article in English | Scopus | ID: covidwho-1672704

ABSTRACT

Coronavirus disease 2019 (COVID-19) is the currently happening pandemic. Up until mid-2021, the total cases of COVID-19 have reached 171 million worldwide. The virus is mainly transmitted through droplets generated when an infected person coughs, sneezes, or exhales. The most common occurring symptoms are fever, cough, and fatigue. The current diagnosis method is done through Reverse-Transcription Polymer Chain Reaction (RT-PCR) testing. Even though this is the current gold standard, this method has several downsides. The RT-PCR is costly, time-consuming, and can lead to another infection if done improperly. In this paper we try to utilize AI to classify COVID-19 using cough sound. This method can work as a triaging tool to help prioritize a person to get future-diagnosis. In this research, our contribution is trying several feature extractions, imbalance handling and modelling techniques to classify COVID-19 using cough sound. We obtained the best result using the combination of NMF-Spectrogram feature, undersampling method, and SVM. It gives the sensitivity of 90.9%, specificity of 55.6% and overall AUC-ROC of 73.3%. We also discovered that the NMF-Spectrogram feature works better than MFCC-based features. © 2021 IEEE.

9.
EBioMedicine ; 75: 103809, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1638088

ABSTRACT

BACKGROUND: Mathematical modelling may aid in understanding the complex interactions between injury and immune response in critical illness. METHODS: We utilize a system biology model of COVID-19 to analyze the effect of altering baseline patient characteristics on the outcome of immunomodulatory therapies. We create example parameter sets meant to mimic diverse patient types. For each patient type, we define the optimal treatment, identify biologic programs responsible for clinical responses, and predict biomarkers of those programs. FINDINGS: Model states representing older and hyperinflamed patients respond better to immunomodulation than those representing obese and diabetic patients. The disparate clinical responses are driven by distinct biologic programs. Optimal treatment initiation time is determined by neutrophil recruitment, systemic cytokine expression, systemic microthrombosis and the renin-angiotensin system (RAS) in older patients, and by RAS, systemic microthrombosis and trans IL6 signalling for hyperinflamed patients. For older and hyperinflamed patients, IL6 modulating therapy is predicted to be optimal when initiated very early (<4th day of infection) and broad immunosuppression therapy (corticosteroids) is predicted to be optimally initiated later in the disease (7th - 9th day of infection). We show that markers of biologic programs identified by the model correspond to clinically identified markers of disease severity. INTERPRETATION: We demonstrate that modelling of COVID-19 pathobiology can suggest biomarkers that predict optimal response to a given immunomodulatory treatment. Mathematical modelling thus constitutes a novel adjunct to predictive enrichment and may aid in the reduction of heterogeneity in critical care trials. FUNDING: C.V. received a Marie Sklodowska Curie Actions Individual Fellowship (MSCA-IF-GF-2020-101028945). R.K.J.'s research is supported by R01-CA208205, and U01-CA 224348, R35-CA197743 and grants from the National Foundation for Cancer Research, Jane's Trust Foundation, Advanced Medical Research Foundation and Harvard Ludwig Cancer Center. No funder had a role in production or approval of this manuscript.


Subject(s)
COVID-19/immunology , Models, Immunological , Respiratory Distress Syndrome/immunology , SARS-CoV-2/immunology , Aged , COVID-19/prevention & control , Clinical Trials as Topic , Female , Humans , Male , Respiratory Distress Syndrome/prevention & control
10.
19th Australasian Conference on Data Mining, AusDM 2021 ; 1504 CCIS:223-234, 2021.
Article in English | Scopus | ID: covidwho-1603699

ABSTRACT

Due to the rapid developments in Intelligent Transportation System (ITS) and increasing trend in the number of vehicles on road, abundant of road traffic data is generated and available. Understanding spatio-temporal traffic patterns from this data is crucial and has been effectively helping in traffic plannings, road constructions, etc. However, understanding traffic patterns during COVID-19 pandemic is quite challenging and important as there is a huge difference in-terms of people’s and vehicle’s travel behavioural patterns. In this paper, a case study is conducted to understand the variations in spatio-temporal traffic patterns during COVID-19. We apply nonnegative matrix factorization (NMF) to elicit patterns. The NMF model outputs are analysed based on the spatio-temporal pattern behaviours observed during the year 2019 and 2020, which is before pandemic and during pandemic situations respectively, in Great Britain. The outputs of the analysed spatio-temporal traffic pattern variation behaviours will be useful in the fields of traffic management in Intelligent Transportation System and management in various stages of pandemic or unavoidable scenarios in-relation to road traffic. © 2021, Springer Nature Singapore Pte Ltd.

11.
J Med Internet Res ; 22(12): e22609, 2020 12 08.
Article in English | MEDLINE | ID: covidwho-965218

ABSTRACT

BACKGROUND: The massive scale of social media platforms requires an automatic solution for detecting hate speech. These automatic solutions will help reduce the need for manual analysis of content. Most previous literature has cast the hate speech detection problem as a supervised text classification task using classical machine learning methods or, more recently, deep learning methods. However, work investigating this problem in Arabic cyberspace is still limited compared to the published work on English text. OBJECTIVE: This study aims to identify hate speech related to the COVID-19 pandemic posted by Twitter users in the Arab region and to discover the main issues discussed in tweets containing hate speech. METHODS: We used the ArCOV-19 dataset, an ongoing collection of Arabic tweets related to COVID-19, starting from January 27, 2020. Tweets were analyzed for hate speech using a pretrained convolutional neural network (CNN) model; each tweet was given a score between 0 and 1, with 1 being the most hateful text. We also used nonnegative matrix factorization to discover the main issues and topics discussed in hate tweets. RESULTS: The analysis of hate speech in Twitter data in the Arab region identified that the number of non-hate tweets greatly exceeded the number of hate tweets, where the percentage of hate tweets among COVID-19 related tweets was 3.2% (11,743/547,554). The analysis also revealed that the majority of hate tweets (8385/11,743, 71.4%) contained a low level of hate based on the score provided by the CNN. This study identified Saudi Arabia as the Arab country from which the most COVID-19 hate tweets originated during the pandemic. Furthermore, we showed that the largest number of hate tweets appeared during the time period of March 1-30, 2020, representing 51.9% of all hate tweets (6095/11,743). Contrary to what was anticipated, in the Arab region, it was found that the spread of COVID-19-related hate speech on Twitter was weakly related with the dissemination of the pandemic based on the Pearson correlation coefficient (r=0.1982, P=.50). The study also identified the commonly discussed topics in hate tweets during the pandemic. Analysis of the 7 extracted topics showed that 6 of the 7 identified topics were related to hate speech against China and Iran. Arab users also discussed topics related to political conflicts in the Arab region during the COVID-19 pandemic. CONCLUSIONS: The COVID-19 pandemic poses serious public health challenges to nations worldwide. During the COVID-19 pandemic, frequent use of social media can contribute to the spread of hate speech. Hate speech on the web can have a negative impact on society, and hate speech may have a direct correlation with real hate crimes, which increases the threat associated with being targeted by hate speech and abusive language. This study is the first to analyze hate speech in the context of Arabic COVID-19-related tweets in the Arab region.


Subject(s)
COVID-19/epidemiology , Deep Learning/standards , Hate , SARS-CoV-2/pathogenicity , Social Media/standards , Speech/physiology , Humans , Pandemics , Research Design , Saudi Arabia
SELECTION OF CITATIONS
SEARCH DETAIL